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Abstract

Experimental methods to measure frequency-dependent dynamic properties of complex structures are
proposed. Flexural wave propagations are analyzed using the Timoshenko beam, the classical beam, and
the shear beam theories. Wave speeds, bending and shear stiffnesses of the structures are measured through
the transfer function method requiring small number of vibration measurements. Sensitivity analysis to
investigate the effects of experimental variables on the measured properties and to study optimal sensor
locations of the vibration measurements is performed. Using the developed methods, the complex bending
and shear stiffnesses of sandwich beams of different core materials and a polymer beam are measured.
Continuous variations of the measured bending and shear stiffnesses and their loss factors with frequency
were obtained. To further illustrate the measurements of frequency-dependent variation of dynamic
properties of complex structures, the damping of structural vibration using porous and granular materials
is investigated. A proper equation of motion for the structural vibration should be used to obtain reliable
data. For example, the method of the Timoshenko beam is required when the bending and shear modes of
vibration occur simultaneously as in the sandwich beam. With advantages from the flexibility in choosing
the vibration measurement locations, the developed methods can be applied to measure dynamic properties
of various complex structures and viscoelastic materials.
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Nomenclature

Â1; Â2; Â3; Â4 complex amplitudes (m)
b̂ ¼ br � ibi frequency parameter
ĉ ¼ cð1þ iZcÞ; cb; cs flexural, bending and

shear wave speeds (m/s)
D̂ ¼ Dð1þ iZDÞ bending stiffness per unit

length (Nm2)
Ê ¼ Eð1þ iZEÞ complex moduli (Pa)
f frequency (Hz)
k̂b ¼ kbr � ikbi wavenumber (rad/m)
L length of beam (m)
Mb, Ib mass and rotary inertia per unit length

(kg/m, kgm)
Ŝ ¼ Sð1þ iZSÞ shear stiffness per unit length

(N)

w beam displacements (m)
x1, x2 coordinates of vibration measurements

(m)
â; b̂; k̂1; k̂2; r; ŝ ¼ sr þ isi parameters in

Timoshenko beam functions
ZE ; Zc; ZD; ZS loss factors
L1;L2;f1;f2 magnitudes and phases of

measured transfer functions
o circular frequency (rad/s)
cx angular rotation

Subscript

j integer
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1. Introduction

To investigate structural response excited by non-constant, time-varying external loads, it is
required to measure dynamic mechanical properties. The measurement results are useful in design
stages, to estimate structural response, sound transmission characteristics, and fatigue life.
Recently, the use of the composite honeycomb panels has expanded especially in aerospace
applications [1]. The composite honeycomb panel consisting of thin, stiff face materials and a
lightweight honeycomb core yields a flexural rigidity that is much larger than the homogeneous
plate of equal mass. Due to this increased stiffness with lighter weight, it is beginning to be used as
a material in aircraft fuselages. Since large variation of the face and core materials is possible, a
simple but reliable test method to measure and compare dynamic mechanical properties is
necessary especially when the frequency-dependent variation of the properties are expected.
Widely used methods to measure the dynamic mechanical properties are the resonance tests [2]

as adopted for several commercially available dynamic material test systems. In the resonance
tests, one method of estimating the damping in the system is using the quality factor [3] to
minimize effects from experimental uncertainties. Nevertheless, the frequency range of these
devices is commonly limited to frequencies less than 200Hz. Then, material properties at higher
frequencies are obtained by measurements over a range of temperature, and subsequent
extrapolation of measured low-frequency data to high frequencies using the WLF (Williams,
Landel, and Ferry) equation [4]. Alternatively, several laboratory methods have been proposed to
directly measure the dynamic mechanical properties of materials at high frequencies without
extrapolation. Madigosky and Lee [5] used a wave propagation approach to measure Young’s
modulus and the loss factor for frequencies upto 10 kHz. In this method the length of the
specimens is required to be large in order to prevent resonance as it is assumed that there are no
reflections from the end of the sample. This requirement limits the applicability of the method
to materials in which the damping is large and rather long specimens can be obtained.
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A measurement method based on standing longitudinal waves was proposed to measure dynamic
properties of polymers [6–12]. A rod-like specimen was excited longitudinally, and the elastic
modulus and the loss factor were calculated from the transfer function measured between the two
accelerometers located at both ends of the specimen. This measurement method was eventually
adopted as an ANSI standard [13]. However, these methods are applicable to homogeneous
specimens only in the direction of the longitudinal vibration, and are not suitable for measuring
the dynamic properties of complex structures under different modes of vibration such as
simultaneous bending and shear deformations of the honeycomb panel; Fig. 1.
1D beam theory has been used to determine dynamic mechanical properties of complex

structures. The complex moduli of viscoelastic materials were estimated by measuring the
resonance frequencies of beams [2], when the viscoelastic materials were used as damping
treatments. The measured values were extrapolated to high frequencies using the WLF equation.
Again, these techniques may apply only to polymers with distinct temperature and frequency
dependences of the dynamic properties. Bland and Lee [14] used a classical beam theory and the
transfer function method to calculate the complex stiffness of structures. The beam with
clamped–free or clamped–loaded boundary conditions was analyzed. Approximate solutions were
proposed to solve the equation formed by the predicted and the measured transfer functions of the
beam vibrations.
Several approaches have been proposed to measure the complex wavenumber of beam

structures. Rizzi and Doyle [15] measured the wave propagation characteristics of composite
beams. Assuming the classical lamination theory, the dynamic bending stiffness and Poisson’s
ratio were obtained. Measurement techniques using moving averages were used to minimize
effects from reflection of propagating waves. Data-processing techniques using the Prony method
have been used to measure complex wavenumber, for example the work by Grosh and Williams
[16]. This technique requires evenly spaced and relatively large number of data measurements. For
smaller number of measurements, an inverse process [17] and nonlinear optimization techniques
of minimizing the normalized mean square error between measurements and predictions [18,19]
have been proposed to estimate the complex wavenumber. When the shear deformation is not
small, for example the sandwich beams, the Timoshenko beam or higher-order beam theories are
required to analyze the wave propagations. For the Timoshenko beam, the dynamic mechanical
(a)

Outer face sheet

Inner face sheet

Honeycomb core

(b)   (c) 

Fig. 1. (a) Schematics of sandwich honeycomb panel and its two different vibrational modes of (b) bending and

(c) shear deformations.
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properties have been estimated from the modal response by minimizing the error between the
measured and predicted resonant frequencies [20–22].
Until now, the transfer function methods have been applied to longitudinal vibration of

viscoelastic materials. For the bending vibrations of the classical beam, only an approximate
solution has been proposed [14]. When the bending and shear modes of vibration (Fig. 1) occurs
simultaneously as in the Timoshenko beam, the estimation of the dynamic properties from the
measured transfer function has been done through numerical methods such as the least-squares
methods [20–22]. In this study, the transfer function methods are proposed to measure dynamic
mechanical properties of complex structures by analyzing the wave propagations using the
Timoshenko beam, the classical beam, and the shear beam theories. The results of each approach
are compared to each other. Several different boundary conditions, mostly geometric boundary
conditions, are considered in deriving and measuring the transfer functions. The wave speed,
shear and bending stiffnesses, and their loss factors are measured. The sensitivity of the proposed
methods is calculated to study the dependence of the results on vibration characteristics, locations
of the vibration measurements, and other experimental variables. The proposed transfer function
methods are applied to measure dynamic properties of the three sandwich beams constructed
using different core materials and one polymer beam. The slip table tests and the impact hammer
tests are performed. From the measured properties and their frequency dependences, the
vibrational modes of the structures are estimated. The developed method is applied to investigate
the damping of the structural vibration through porous and granular materials—the dynamic
bending stiffness of hollow cylindrical beams containing different damping materials is measured.
Since the developed transfer function methods are based on the exact solutions, it requires small
number of measurements but reliable test results are obtained.
2. Transfer function methods

2.1. Complex bending and shear stiffnesses

To model the dissipation of vibration energy within a structure, complex elastic moduli is used
to describe the dynamic mechanical properties. For uniaxial vibrations, the complex modulus is
defined as [23]

ÊðoÞ ¼ ŝzðoÞ=�̂zðoÞ ¼ EðoÞ½1þ iZEðoÞ�, (1)

where E is the dynamic moduli, ZE is the loss factor, and i ¼
ffiffiffiffiffiffiffi
�1

p
: The Fourier transforms of the

stress and the strain are defined as ŝzðoÞ ¼
R1
�1

szðtÞe
�iot dt and �̂zðoÞ ¼

R1
�1

�zðtÞe
�iot dt: This

definition of the complex modulus applies also to the bending and shear stiffnesses as

D̂ðoÞ ¼ DðoÞ½1þ iZDðoÞ�; ŜðoÞ ¼ SðoÞ½1þ iZSðoÞ�. (2)

The transfer function method has been applied to longitudinal vibration of rods [6–12]. In this
case the direction of the wave propagation and the vibration are identical as shown in Fig. 2(a),
and the size of the vibration measurement sensor has no impact on the results if the mass of the
sensor is taken into consideration. For flexural vibration, the wave propagation direction is
perpendicular to the direction of the vibration as shown in Figs. 2(b) and (c) which show vibrating
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(a)  

w0 w(L,t)

deformed

x=0 x=L

accelerometer

(b) 

w0

w(x,t)

accelerometer

deformed

x=0 x=L

x2
x1

(c) 

w(x,t)

accelerometer

deformed

x=0 x=L

F0

x2
x1

    x, the direction of wave propagations 

Fig. 2. Measurements of vibration using accelerometers for (a) longitudinal vibrations, and flexural vibrations of

(b) clamped–free beam and (c) free–free beam.
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beams under two different boundary conditions. The flexural waves generated from external
excitations propagate in the x-direction and are reflected and propagate back from boundaries. In
this case, the size of the sensor should be as small as possible to avoid problems related to spatially
averaged measurements of the wave motion. As vibration measurement sensors with small mass
and size, such as miniature piezoelectric accelerometers, MEMS accelerometers, or laser
vibrometers, become available, spatial averaging effects and mass loading on the structure are
minimized. In this study, miniature piezoelectric accelerometers were used. The mass of the sensor
is neglected, and the size is assumed to be negligibly small in deriving the predictions of the
transfer functions between the beam displacement.

2.2. The Timoshenko beam

Fig. 2(b) shows the transverse vibration of the beam under fixed–free boundary conditions. The
displacement boundary condition is imposed at the clamped edge of the beam. The equation of
motion for the Timoshenko beam is

D
q2cx

qx2
þ S

qw

qx
� cx

� �
� Ib

q2cx

qt2
¼ 0; Mb

q2w
qt2

� S
q2w
qx2

�
qcx

qx

� �
¼ 0, (3a,b)

where cx is the angular rotation, Mb and Ib are the mass and rotary inertia per unit length,
respectively. The general solution for the Timoshenko beam is well known [24]. In this study, the
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satisfying Timoshenko beam functions are given as

ŵðxÞ ¼ Â1 sin b̂b̂x þ Â2 cos b̂b̂x þ Â3e
b̂âðx�LÞ þ Â4e

�b̂âx, (4a)

ĉxðxÞ ¼ Â1k̂1 cos b̂b̂x � Â2k̂1 sin b̂b̂x þ Â3k̂2e
b̂âðx�LÞ � Â4k̂2e

�b̂âx, (4b)

where

â

b̂

 !
¼

1ffiffiffi
2

p 
½r2 þ ŝ2� þ ðr2 � ŝ2Þ2 þ
4

b̂
2

" #1=28<
:

9=
;

1=2

,

r2 ¼ Ib=Mb; ŝ2 ¼ D̂=Ŝ; k̂1 ¼ b̂ðb̂2 � ŝ2Þ=b̂; k̂2 ¼ b̂ðâ2 þ ŝ2Þ=â.

The usual complex notation is used, wðx; tÞ ¼ RefŵðxÞeiotg: Notations of the symbols follow
closely those in Ref. [24]. The frequency parameter, b̂; is related to the circular frequency through
b̂
2
¼ o2Mb=D̂: Four boundary conditions of the beam in Fig. 2(b) are applied as

ŵð0Þ ¼ w0; ĉxð0Þ ¼ 0;
qŵðLÞ

qx
� ĉxðLÞ ¼ 0;

qĉxðLÞ

qx
¼ 0. (5a2d)

Consequently, the following matrix system of equations is obtained as

0 1 e�b̂âL 1

k̂1 0 k̂2e
�b̂âL �k̂2

b̂b̂ cos b̂b̂L � k̂1 cos b̂b̂L �b̂b̂ sin b̂b̂L þ k̂1 sin b̂b̂L þb̂â� k̂2 �b̂âe�b̂âL þ k̂2e
�b̂âL

�k̂1b̂b̂ sin b̂b̂L �k̂1b̂b̂ cos b̂b̂L þk̂2b̂â þk̂2b̂âe�b̂âL

2
6666664

3
7777775

Â1

Â2

Â3

Â4

2
666664

3
777775

¼

w0

0

0

0

2
666664

3
777775. ð6Þ

The above matrix system of equations is solved using symbolic calculations to determine the
transfer functions of the transverse vibrations. Note that the transfer function of the displacement
is same to that of the acceleration. For the transfer function method, the complex wavenumber of
the frequency parameter is calculated from the measured transfer functions to obtain the dynamic
mechanical properties. For the vibrating Timoshenko beam, the unknown frequency parameters,
b̂ and ŝ; are calculated to determine the bending and shear stiffness such that:

D̂ ¼ o2Mb=b̂
2
; Ŝ ¼ o2Mb=b̂

2
ŝ2. (7a,b)

The calculation requires two different sets of transfer function measurements. The transfer
functions between the transverse displacements and the angular rotations, i.e., ŵðx1Þ=ŵð0Þ and
ĉxðx1Þ=ŵð0Þ; where x1 is the location of the vibration measurements maybe used. However the
angular rotations are more difficult to measure compared to the transverse displacements. In this
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study, two different transfer functions of the displacements are used instead as

L1e
if1 ¼ ðÂ1 sin b̂b̂x1 þ Â2 cos b̂b̂x1 þ Â3e

b̂âðx1�LÞ þ Â4e
�b̂âx1Þ=w0, (8a)

L2e
if2 ¼ ðÂ1 sin b̂b̂x2 þ Â2 cos b̂b̂x2 þ Â3e

b̂âðx2�LÞ þ Â4e
�b̂âx2Þ=w0, (8b)

where L1 and L2 are the amplitudes and f1 and f2 are the phases of the measured transfer
functions between the displacement at x ¼ x0 (w0) and those at x ¼ x1 and x2 respectively. Eq. (8)
is solved numerically using the Newton–Rapson method [25]. The iterations to solve the
simultaneous four equations are ðb̂ ¼ br � ibi; ŝ ¼ sr þ isiÞ

br

bi

sr

si

2
6664

3
7775

jþ1

¼

br

bi

sr

si

2
6664

3
7775

j

�

Re
qŵðx1Þ

qbr

;
qŵðx1Þ

qbi

;
qŵðx1Þ

qsr

;
qŵðx1Þ

qsi

� �

Im
qŵðx1Þ

qbr

;
qŵðx1Þ

qbi

;
qŵðx1Þ

qsr

;
qŵðx1Þ

qsi

� �

Re
qŵðx2Þ

qbr

;
qŵðx2Þ

qbi

;
qŵðx2Þ

qsr

;
qŵðx2Þ

qsi

� �

Im
qŵðx2Þ

qbr

;
qŵðx2Þ

qbi

;
qŵðx2Þ

qsr

;
qŵðx2Þ

qsi

� �

2
6666666666664

3
7777777777775

�1

Refŵðx1Þ � w0L1e
if1g

Imfŵðx1Þ � w0L1e
if1g

Refŵðx2Þ � w0L2e
if2g

Imfŵðx2Þ � w0L2e
if2g

2
66664

3
77775, (9)

where the subscripts j and j+1 denote the current and next iterations, respectively. Symbolic
computations to solve Eq. (6) and to calculate the derivatives with respect to b̂ and ŝ in Eq. (9)
were performed using commercially available software MATLABs. The flexural wave speed is
derived from the characteristic mechanical impedances by considering harmonic flexural waves
propagating in the plate such that the displacement and rotation is given as wðx; tÞ ¼
RefB̂eiðotþb̂b̂xÞg and cxðx; tÞ ¼ Refik̂1B̂e

iðotþb̂b̂xÞg; respectively, and is obtained as [26]

ĉ ¼ cð1þ iZcÞ ¼
D̂b̂

Mbb̂o
¼

o

b̂b̂
. (10)

Consequently, the wave speed is calculated using the converged values of b̂ and ŝ: The flexural
wave speed is complex when there is a damping in the structure. For the Timoshenko beam, the
flexural deformation occurs as bending at low frequencies. At high frequencies, the shear modes of
vibration dominate [26]. When the beam response is dominated only by the bending or shear
modes of vibration, the application of the transfer function method of the Timoshenko beam
requires impractically precise measurement of the transfer functions as shown in the sensitivity
analysis presented in later sections. In such cases, the application of the classical beam or the shear
beam theories is preferred.
2.3. The classical beam

For vibration of a beam of a small thickness, the effects from the shear deformation and the
rotary inertia are negligibly small compared to those of the bending deformation. In such cases,



ARTICLE IN PRESS

J. Park / Journal of Sound and Vibration 288 (2005) 57–7964
the equation of motion is simplified to that of the classical beam [27]

D
q4w
qx4

þ Mb
q2w
qt2

¼ 0. (11)

The satisfying beam function is

ŵðxÞ ¼ Â1 sin k̂bx þ Â2 cos k̂bx þ Â3e
k̂bðx�LÞ þ Â4e

�k̂bx, (12)

where k̂b is the wavenumber related to the circular frequency through k̂b ¼ ðo2Mb=D̂Þ
1=4: Four

boundary conditions of the clamped–free beam are

ŵð0Þ ¼ w0;
qŵð0Þ

qx
¼ 0;

q2ŵðLÞ

q2x
¼ 0;

q3ŵðLÞ

q3x
¼ 0. (13a2d)

The following matrix system of equations is obtained from Eqs. (12) and (13) as

0 1 e�k̂bL 1

1 0 e�k̂bL �1

� sin k̂bL � cos k̂bL 1 e�k̂bL

� cos k̂bL sin k̂bL 1 �e�k̂bL

2
66664

3
77775

Â1

Â2

Â3

Â4

2
66664

3
77775 ¼

w0

0

0

0

2
6664

3
7775. (14)

Similar to the procedures applied for the Timoshenko beam, the above matrix system of
equations is solved using the symbolic calculations to obtain the transfer function between the
displacements. The complex wavenumber is obtained through the Newton–Rapson method, and
the bending stiffness is consequently calculated as

D̂ ¼
o2Mb

k̂
4

b

. (15)

Only one transfer function measurement is required

L1e
if1 ¼

ŵðx1Þ

ŵð0Þ
¼

Â1 sin k̂bx1 þ Â2 cos k̂bx1 þ Â3e
k̂bðx1�LÞ þ Â4e

�k̂bx1

w0
. (16)

Then, the Newton–Rapson method is applied to solve Eq. (16) with respect to the complex
wavenumber, k̂b ¼ kbr � ikbi; numerically. The iterations to solve the above equation are
performed as

kbr

kbi

" #
jþ1

¼
kbr

kbi

" #
j

�

Re
qŵðx1Þ

qkbr

;
qŵðx1Þ

qkbi

� �

Im
qŵðx1Þ

qkbr

;
qŵðx1Þ

qkbi

� �
2
6664

3
7775
�1

Refŵðx1Þ � w0L1e
if1g

Imfŵðx1Þ � w0L1e
if1g

" #
. (17)

2.4. The shear beam

When the bending deformation is negligibly small and the flexural displacement of
the panel occurs through the shear modes (the shear beam, Fig. 1(c)), the equation of
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motion is

S
q2w
qx2

¼ Mb

q2w
qt2

. (18)

The satisfying beam functions are

ŵðxÞ ¼ Â1 sin k̂bx þ Â2 cos k̂bx, (19)

where the wavenumber k̂b is related to the circular frequency through k̂b ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mb=Ŝ

q
: Note that

there are no exponentially decaying (evanescent) waves for the shear beam. After applying the
fixed–free boundary conditions, the transfer function is obtained as

L1e
if1 ¼

ŵðx1Þ

ŵð0Þ
¼ cos k̂bðL � xÞ= cos k̂bL. (20)

For the shear beam, the unknown complex wavenumber is calculated through the transfer
function method, and the complex shear stiffness is obtained consequently. The Newton–Rapson
method is applied to solve Eq. (20) after separating the real and imaginary parts.

2.5. Different boundary conditions

In the transfer function methods, the geometric boundary conditions are preferred rather than
the natural boundary conditions to minimize computational costs. If the beam is supported by
springs of unknown stiffness, the complexity of the problem increases significantly. Consequently,
the geometric boundary conditions such as the free or clamped boundary conditions are preferred.
The geometric boundary conditions are relatively simple to implement in laboratory setups. The
same numerical procedures apply to beams with different boundary conditions than those
considered in previous sections. For example, the boundary conditions of the impact hammer
tests, Fig. 2(c), for the Timoshenko beam, are

qŵð0Þ

qx
� ĉxð0Þ ¼ �

F0

Ŝ
;

qĉxð0Þ

qx
¼ 0;

qŵðLÞ

qx
� ĉxðLÞ ¼ 0;

qĉxðLÞ

qx
¼ 0, (21a2d)

where F0 is the impact force applied at x ¼ 0:
Large variations of the boundary conditions other than the clamped–free beam are possible

[24]. The transfer function depends also on the kinds of the excitation method. Thereby a lot of
variations on the boundary conditions in deriving the transfer functions are possible. After
obtaining the beam functions for each boundary condition, the transfer function methods are
applied in the exactly same procedures as presented in this section.
3. Sensitivity analysis

Measurement inaccuracies of the experimental variables, for example—calibration error in
vibration measurements, misaligned sensor locations, length-wise variation of the beam geometry,
non-identical frequency-dependent characteristics of the sensors, electrical noise, and incoherent
measurements, etc., are inevitable. Structural vibrations which do not conform to those assumed
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in deriving the linear equation of motion also contribute to the inaccuracy. The sensitivity of the
proposed transfer function to these errors depends on several factors including dynamic
mechanical properties and vibrational characteristics of the beam. For example, when the beam
vibration is primarily influenced by the shear modes, Fig. 1(b), measuring the bending
stiffness using the transfer function method of the Timoshenko beam is very sensitive to the
inaccurate measurements. The solution of the Newton–Rapson methods may not converge or
may result in physically unacceptable values (for example, negative stiffness) when the sensitivities
are too large.
The sensitivity of the measured dynamic mechanical properties to the experimental variables,

are derived following the procedures similar to those used for the transfer function method for the
longitudinal vibration of the rods presented in Ref. [11]. For the Timoshenko beam, the
sensitivities are derived from Eq. (7) as

dDr

dDi

dSr

dSi

2
66664

3
77775 ¼ �2o2Mb

Refb̂
�3
ð1;�iÞ; 0; 0g

Imfb̂
�3
ð1;�iÞ; 0; 0g

Refŝ�2b̂
�3
ð1;�iÞ; ŝ�3b̂

�2
ð1;�iÞg

Imfŝ�2b̂
�3
ð1;�iÞ; ŝ�3b̂

�2
ð1;�iÞg

2
6666664

3
7777775

dbr

dbi

dsr

dsi

2
66664

3
77775. (22)

Consequently, the sensitivity of the dynamic mechanical properties are calculated
from the sensitivity of b̂ and ŝ to the measured transfer function which are obtained from
Eq. (8) as

dbr

dbi

dsr

dsi

2
6664

3
7775 ¼ w0

Re
qŵðx1Þ

qbr

qŵðx1Þ

qbi

qŵðx1Þ

qsr

qŵðx1Þ

qsi

� �

Im
qŵðx1Þ

qbr

qŵðx1Þ

qbi

qŵðx1Þ

qsr

qŵðx1Þ

qsi

� �

Re
qŵðx2Þ

qbr

qŵðx2Þ

qbi

qŵðx2Þ

qsr

qŵðx2Þ

qsi

� �

Im
qŵðx2Þ

qbr

qŵðx2Þ

qbi

qŵðx2Þ

qsr

qŵðx2Þ

qsi

� �

2
6666666666664

3
7777777777775

�1

Refeif1 ; iL1e
if1 ; 0; 0g

Imfeif2 ; iL1e
if1 ; 0; 0g

Ref0; 0; eif2 ; iL2e
if2g

Imf0; 0; eif2 ; iL2e
if2g

2
66664

3
77775

dL1

df1

dL2

df1

2
66664

3
77775. (23)

Similar procedures are repeated for the classical and the shear beams, and the sensitivities are
derived, respectively as
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qŵðx1Þ

qkbi

� �
2
6664

3
7775
�1

Refeif1 ; iL1e
if1g

Imfeif1 ; iL1e
if1g

" #
dL1

df1

" #
,

(24a)



ARTICLE IN PRESS

J. Park / Journal of Sound and Vibration 288 (2005) 57–79 67
dSr

dSi

" #
¼ �2o2Mbw0

Refk̂
�3

b ð1;�iÞg

Imfk̂
�3

b ð1;�iÞg

2
4

3
5 Re
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Other noise sources are discontinuities in beam construction and 2D vibration of the beam. To
analyze the 2D effects, numerical methods such as the finite element or the Rayleigh–Ritz
methods are required in most cases. These numerical methods are not appropriate in the transfer
function method since the method requires closed-form solutions. Consequently, the width of the
beam should be small compared to the wavelength. Also, experimental error from the location
and finite size of the sensors should be minimized. In actual measurements, there are several more
complicating factors such as the limited dynamic range of the sensors that induce measurement
problems at anti-resonances especially when the damping in the system is small.
4. Results and discussions

4.1. Sensitivity analysis

The sensitivity analysis of the proposed methods was simulated for the beams considered in this
study. The dynamic and geometric properties are shown in Table 1. Three sandwich beams with
different core materials were custom-built. The first and second sandwich beams consisting of two
identical thin face aluminum sheets of 0.4mm thickness, and Nomexs honeycomb cores of 25.4
and 19mm thickness, respectively. The widths of the sandwich honeycomb beams were 76.2mm.
The third sandwich beam consisted of two identical thin face aluminum sheets of 0.51mm
thickness, and a 25.4mm thick foam core. The width of this sandwich beam was 74.2mm. A
polymeric beam, 51mm diameter cylindrical bar made of Plexiglass (beam 4), was also tested.
Table 1 shows the length and measurement locations (x1 and x2) and the dynamic mechanical
properties that were rough estimates from comparison of the measured transfer function and
resonant frequencies with the predictions.
Table 1

Mechanical properties of beams and coordinates of vibration measurement

Beam No Mb

(kg/m)

Ib

(10�6 kgm)

L

(m)

x1

(m)

x2

(m)

D

(Nm2)

ZD

(%)

S

(kN)

ZS

(%)

1 (sandwich-honeycomb) 0.33 38 0.84 0.33 0.58 750 0.1 105 2.0

2 (sandwich-honeycomb) 0.27 19 0.81 0.30 0.56 422 0.2 39 2.5

3 (sandwich-foam core) 0.37 45 0.77 0.26 0.52 946 0.18 10.2 2.6

4 (polymer) 2.41 390 0.70 0.23 0.47 1550 6.0 3200 6.0

5 (hollow cylinders) 0.30 215 0.89 0.25 0.50 540 0.1 1708 0.1
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In deriving the solution of the Timoshenko beam, the beam functions in Eq. (4) are valid until

ðr2 � ŝ2Þ2 þ
4

b̂
2

" #1=2
4ðr2 þ ŝ2Þ. (25)

The beams 1–4 in Table 1 satisfy the condition of Eq. (25) up to the frequencies, 8400, 7200, 2400,
and 14,400Hz, respectively. The analysis using Timoshenko beam theory was performed below
these frequencies.
The calculated transfer functions for the second sandwich honeycomb beam (beam 2) from Eq.

(6) are plotted in Fig. 3 using the parameters in Table 1. Fig. 4 shows the predicted flexural wave
speeds of this beam obtained using Eq. (10). The bending and shear wave speeds assuming the
bending and shear beams, respectively, are plotted also. The comparison suggested that the beam
vibration was affected mostly by the bending modes at low frequencies. The shear modes of
vibration dominated at high frequencies. In between these two extreme cases, both of the bending
and shear modes of vibration influenced the beam response.
The sensitivity analysis was performed using the parameters in Table 1. The results for the

honeycomb beam (beam 2) and the polymer beam (beam 4) are presented in Fig. 5. In most cases,
the maximum peaks in the calculated sensitivities occurred at frequency ranges in which the
differences of magnitudes and phases of the acceleration measurements are small. The sensitivities
for the Timoshenko beam was low in the limited frequency ranges where bending and shear
deformation occurs simultaneously, Fig. 5(a). When the shear deformation is small, for example
the polymer beam (beam 4), the sensitivity of the obtained shear stiffness using the Timoshenko
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Fig. 3. Calculated transfer functions between transverse displacements at x ¼ x0 and x ¼ :—m—, x1; —.—, x2.
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beam was larger than those of the bending stiffness. The calculated dynamic stiffnesses may not be
physically acceptable in case the sensitivities are too large. In such cases, the solution from the
Newton–Rapson method may diverge when small errors are included in the measured transfer
function. In Figs. 5(b) and (c) which show simulation results for the same beam but for different
beam equation of motion, the sensitivity for the classical beam was smaller in general compared to
those obtained for the Timoshenko beam over the entire frequency ranges. The sensitivity analysis
presented in this section is useful in analyzing the measured dynamic stiffness from the developed
transfer function methods especially when physically unacceptable frequency-dependent behavior
is observed as discussed later in this section.
Fig. 6 shows the sensitivity calculated assuming the classical beam and its variation with the

location of the vibration measurements, x1. The parameters of the honeycomb beam (beam 2) in
Table 1 were applied. At locations and frequencies of the sensitivity maximum peaks, the results
from the transfer function methods were excessively sensitive to the experimental errors.
Consequently, the results were not reliable when obtained at frequencies of these peaks. The
maximum peaks were more distinctive for test materials of small loss factor. For materials with
large loss factor, the maximum peaks were broad, and consequently the results were less sensitive
to the experimental variables at frequencies of these maximum peaks. When the location of the
vibration measurement of the beam was too close to the fixed end of the beam, i.e., x1E0, the
sensitivity was large since the phase and magnitude difference between the two vibration
measurements at x ¼ 0 and x1 was small. To avoid this large sensitivity to experimental variables,
it would be advantageous to locate the sensors as far as possible, for example, the vibration
measurements of the beam at the opposite ends ðx1 ¼ LÞ: However, this resulted in larger number
of maximum peaks as shown in Fig. 6. A smaller number of peaks resulted as the location of the
vibration measurements of the beam (x1) approaches the one at the source. For example, first
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equation of motion—Timoshenko beam theory applied (a) for sandwich beam (beam 2) and (b) for Plexiglas (beam 4),
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sensitivity maximum peak occurred at f ¼ 1400Hz when x1 ¼ L=3; however four maximum
peaks occurred at f ¼ 93; 370, 830, 1490Hz when x1 ¼ L: Consequently, it is recommended to
avoid locating the sensor too close to the boundaries when excited under the fixed–free boundary
condition.

4.2. Measurements of dynamic properties of complex structures

The experiments were performed to measure the dynamic mechanical properties of the beams in
Table 1. A slip table (Unholtz-Dickie T-1000 Shaker) was used to induce controlled vibration of
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the beams under fixed–free boundary conditions (the slip table test). For the sandwich beams, an
aluminum block of same thickness as the core replaced the core material at one end of the beam.
The portion of the beam with the aluminum block was fixed to the slip table floor using a clamp
made of steel. For the polymer beam (beam 4), one end of the beam was fixed to the slip table
floor using an epoxy from which the same boundary conditions were imposed. Fig. 7 shows the
experimental setup for the slip table tests. From the vibration of the slip table, the displacement
boundary conditions of the beam were imposed as shown in Fig. 2(b).
Fig. 8 shows the measured transfer functions between the displacements for the sandwich

honeycomb beam (beam 2). Miniature piezoelectric accelerometers (Endevco model 2250-A) were
used to measure the acceleration. The frequency range of the random excitation was limited from
10 to 1400Hz for the sandwich beams and from 10 to 2000Hz for the polymer beam. The
dynamic range of the slip table limited the frequency ranges to 2 kHz. The acceleration levels
along the width of the sandwich beam near the fixture were not constant but became greater with
increasing distance from the slip table floor at high frequencies due to non-rigid responses of the
test fixture. To minimize the effects of this variation, the accelerometers were attached as close to
the center of the beam width as possible.
Fig. 9 shows the measured complex stiffnesses of the beams (bending and shear stiffnesses and

their loss factors) from the transfer function method of the Timoshenko beam and the slip table
tests. The dashed lines are the rough estimates shown in Table 1 that were used as initial values for
the Newton–Rapson method. The bending stiffness of the sandwich beams was almost constant
and its loss factor was small since the aluminum face panel whose material damping is small had
most significant impact on the bending stiffness. The obtained bending stiffness was very close to
the value predicted from the properties of the face panel and the core thickness, d, as D ¼ Ef hd2=2
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Fig. 7. Experimental setup of the slip table tests.

J. Park / Journal of Sound and Vibration 288 (2005) 57–7972
[1] where Ef is the Young’s modulus and h is the thickness of the face panel. The shear loss factors
of the sandwich beams were higher than those of the bending stiffnesses. A large variation of the
measured shear loss factor was resulted for the sandwich beams of honeycomb core (beams 1 and
2) except the frequency ranges that the bending and shear deformation occurred simultaneously
and consequently the sensitivities were low (100–300Hz). There were several reasons for this large
variation. The shear deformation occurred at high frequencies in which the sensitivity was large.
Non-uniform lengthwise variations of the width of the core that were present in the custom-built
honeycomb beams also contributed to the large variation.
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In Fig. 9, there are discontinuities in the measured frequency-dependent variation of the
measured dynamic stiffness and loss factors, for example, at 50 and 250Hz for the sandwich beam
(beam 2) and 50, 250, 600, and 1050Hz for the polymer beam (beam 4). These frequencies
correspond to the maximum peaks of the sensitivities in Fig. 5. Consequently, this discontinuous
behavior in the measured dynamic characteristics is not avoidable especially when the material
damping is small as discussed in the previous section.
Since the frequency range of the slip table tests was limited to 2 kHz, impact hammer tests were

performed for the clamped–free beam to investigate the response of the sandwich beams. The
impact hammer model PCB 086C80 was used to excite the clamped–free beam at the free end,
x ¼ L: The transfer functions between the beam responses x ¼ L and x ¼ x1 and x2 were
measured, and the transfer function methods were applied following the same procedures. For the
impact hammer test the non-ideal and non-consistent impact forces and smaller number of
averages compared to the slip table test were inevitable. The measured shear stiffnesses from the
transfer function method of the shear beam and the impact hammer tests are shown in Fig. 10.
The application of the shear beam was valid only at high frequencies in which the measured shear
stiffness was almost constant and agreed well to those calculated assuming the Timoshenko beam.
This suggested that the application of the shear beam is an appropriate alternative to the
Timoshenko beam at these high frequencies.
Fig. 11 shows the flexural wave speeds calculated from Eq. (10) and the values measured from

the slip table tests assuming the Timoshenko beam. The dashed lines are the calculated values
using the values in Table 1. The wave speeds measured from the impact hammer tests assuming
the shear beam are plotted also (the unfilled keys). For all the beams tested in this study, the wave
speeds smoothly increased with frequency. At high frequencies, the wave speeds were almost
constant for the sandwich beams due to the shear deformation. The measured wave speeds were
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not affected by independent face bending of the inner and outer laminates which Kurtze and
Watters considered in analyzing the wave propagation through honeycomb panels [26,28]. At low
frequencies, the wave speeds were close to those calculated through the classical beam. In between
these two extreme cases, the beam vibrations were influenced both by the bending and shear
modes. The loss factors of the wave speeds, Zc; are also shown. With increasing frequency, gradual
changes of the measured loss factor from those affected by the bending stiffness of small loss
factor to those affected by the shear stiffness of large loss factor were observed. For the polymer
beam, the wave speeds increased constantly with frequency more rapidly than the values
calculated using the properties in Table 1 due to the increasing bending stiffness in Fig. 9.
Fig. 12 shows the bending stiffness of the polymer beam (beam 4) obtained by the transfer

function method of the classical beam and the slip table test. Since the sensitivity analysis
presented in Fig. 5(c) suggests that there is no significant sensitivity maximum below 1 kHz, the
measured transfer function at x ¼ x1 was used to obtain the dynamic characteristics. When the
measured transfer function at x ¼ x2 was used, there was discontinuous variation at f ¼ 300Hz
as predicted in the sensitivity analysis. The bending stiffness became larger with increasing
frequency at frequencies lower than 300Hz, and agreed well to the values calculated assuming the
Timoshenko beam, Fig. 9(a). At higher frequencies, the stiffness measured assuming the classical
beam started to decrease, which suggested that the shear deformation and the rotary inertia were
no longer negligible and should be taken into consideration, i.e., the Timoshenko beam theory
should be used as the results shown in Fig. 9(a). The bending stiffness had a loss factor less than
0.1 and continued to decreases with increasing frequency. This loss factor variation and Young’s
moduli obtained from the measured bending stiffness were very similar to those measured using
different methods for the Plexiglass in Ref. [29].
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4.3. Vibration damping using granular and porous materials

To investigate the damping of structures using porous and granular materials, the slip table
tests were performed for hollow cylindrical beams (beam 5 in Table 1, o.d. and i.d. were 0.025 and
0.022m, respectively), made of aluminum. One end of the beam was fixed to the slip table floor
using an epoxy. The dynamic properties of beams with and without damping treatments in the
beam cavity were measured. Polyurethane acoustic foam and three different lightweight
microspheres were considered as damping materials. The particle radiuses of the three
microsphere samples were 210, 300, 600 mm, and their densities were 44, 23, 23 kg/m3, respectively.
The particles were made of polyimide and had geometries close to a hollow sphere. The density of
the polyurethane acoustic foam was 37 kg/m3. The foam was cut to the shape of spherical cylinder
whose diameter was slightly larger than the i.d. of the beam and was tightly fitted to the beam
cavity without epoxy.
Fig. 13 shows the measured transfer functions between the displacement imposed by the

vibration of the slip table floor ðw0Þ and the displacement at x ¼ x1ðwðx1ÞÞ when the beam cavity
was empty, and was filled by the microspheres ðR ¼ 210mmÞ: The mass ratio of the microspheres
to the beam was 5%. This ratio decreased when the other lightweight microspheres of smaller
density was tested. The lightweight microspheres significantly reduced the vibration response of
the beam at resonances. Using the transfer function method of the classical beam, the dynamic
stiffness was calculated from the measured transfer functions and is shown in Fig. 14. The
conduction of the vibration energy into the granular material and subsequent dissipation
increased the bending loss factor significantly. The maximum of the loss factor occurred when
there was a resonance for the acoustic response along the cross-section. For the damping material
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Fig. 13. Transfer function for the vibration of the beam: ———, without (un-damped) and - - - - - -, with (damped)

microspheres ðR ¼ 210mmÞ inside the beam cavity.
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with higher wave speed, for example the granular material with smaller density and particle size,
the maximum loss factor occurred at higher frequencies. The analysis of this vibration control
using granular materials together with the measurements of vibration characteristics of granular
and porous materials is the continuing research subject of the author.
5. Conclusions

Transfer function methods to measure dynamic mechanical properties of beams were
developed. Frequency-dependent wave speeds, bending and shear stiffness and their loss factors
were measured. Different beam equations of motion, the Timoshenko beam, the classical beam,
and the shear beam, were applied in the transfer function methods to predict and analyze the wave
propagations. Sensitivity analysis of the developed transfer function method was performed to
investigate the effects of experimental variables. The application of the Timoshenko beam to the
transfer function method was required when the beam vibration was influenced by both the
bending and shear modes. In case the beam vibration is affected by the bending or shear modes
only, the application of the classical beam or the shear beam was advantageous from smaller
sensitivity. Experiments were performed to measure dynamic mechanical properties of beams. For
the transfer function method of the Timoshenko beam, the results were reliable when both the
bending and shear modes of vibration occurred as was predicted from the sensitivity analysis. The
wave speeds of the sandwich beam became larger with increasing frequency. At high frequencies,
the measured wave speeds of the sandwich beams were almost constant as predicted from the
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Timoshenko beam theory. The dynamic stiffness of structures damped by porous and granular
materials was also investigated to study its large variation with frequency.
Only when the transfer function methods with adequate equation of motion were used, non-

resonant frequency dependence of the wave speeds and dynamic mechanical properties were
resulted. Although the number of vibration measurements was kept as small as possible in this
study, increasing the number of vibration measurements and selecting the results of small
sensitivity can improve the quality of the results. The measured dynamic properties can be used in
the theoretical models of complex structures to predict their vibro-acoustic performance, and be
compared to each other for various constructions.
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